594 research outputs found

    Global sensitivity analysis for the boundary control of an open channel

    Full text link
    The goal of this paper is to solve the global sensitivity analysis for a particular control problem. More precisely, the boundary control problem of an open-water channel is considered, where the boundary conditions are defined by the position of a down stream overflow gate and an upper stream underflow gate. The dynamics of the water depth and of the water velocity are described by the Shallow Water equations, taking into account the bottom and friction slopes. Since some physical parameters are unknown, a stabilizing boundary control is first computed for their nominal values, and then a sensitivity anal-ysis is performed to measure the impact of the uncertainty in the parameters on a given to-be-controlled output. The unknown physical parameters are de-scribed by some probability distribution functions. Numerical simulations are performed to measure the first-order and total sensitivity indices

    Quasi-optimal robust stabilization of control systems

    Full text link
    In this paper, we investigate the problem of semi-global minimal time robust stabilization of analytic control systems with controls entering linearly, by means of a hybrid state feedback law. It is shown that, in the absence of minimal time singular trajectories, the solutions of the closed-loop system converge to the origin in quasi minimal time (for a given bound on the controller) with a robustness property with respect to small measurement noise, external disturbances and actuator noise

    A Region-Dependent Gain Condition for Asymptotic Stability

    Full text link
    A sufficient condition for the stability of a system resulting from the interconnection of dynamical systems is given by the small gain theorem. Roughly speaking, to apply this theorem, it is required that the gains composition is continuous, increasing and upper bounded by the identity function. In this work, an alternative sufficient condition is presented for the case in which this criterion fails due to either lack of continuity or the bound of the composed gain is larger than the identity function. More precisely, the local (resp. non-local) asymptotic stability of the origin (resp. global attractivity of a compact set) is ensured by a region-dependent small gain condition. Under an additional condition that implies convergence of solutions for almost all initial conditions in a suitable domain, the almost global asymptotic stability of the origin is ensured. Two examples illustrate and motivate this approach
    • …
    corecore